
PURPOSE: This technical note is the third in a series of three technical notes providing guidance
on evaluating the potential for recovery of dredged material for beneficial use (BU), either as is or
using physical separation (soil washing) to meet BU specifications. This technical note introduces
statistical methods for developing a sampling plan and interpreting and extrapolating the resulting
data. The first technical note (Olin-Estes and Palermo 2000b) introduces physical separation
concepts and presents mathematical relationships for estimating material recovery potential (MRP).
A prescriptive approach to estimating volumes meeting BU requirements based on available
information, or information obtained from limited sampling, is outlined in the second technical note
(Olin-Estes and Palermo 2000a).

BACKGROUND: The principal motivation for BU recovery of dredged material is the growing
shortage of storage capacity in confined disposal facilities (CDFs). The fundamental purpose of
these technical notes is to assist in determining when material recovery is technically and economi-
cally feasible, and provide a strategy for obtaining and using physical and chemical information
necessary for this evaluation at the least possible cost. The fundamental approach is to begin with
available information and progress to targeted sampling and analysis as needed.

Olin-Estes and Palermo (2000a, 2000b) introduce prescriptive (limited sampling) site charac-
terization methods, and physical separation concepts and methods for estimating MRP, respectively.
The feasibility of separation as a management approach is dependent on several factors, including
ability to identify distinct fractions within the material meeting BU criteria, ability to separate
suitable fractions, and MRP as determined by available volumes of suitable material. This technical
note introduces statistical sampling and data estimation methods for extensive site characterization.

INTRODUCTION: When separation appears to be necessary to meet material specifications for
identified BUs, more detailed sediment/site characterization and evaluation are needed to estimate
MRP. Extensive site sampling and data interpretation are addressed in the following sections.
Figure 1 illustrates the position of extensive site sampling and characterization in evaluating
feasibility of BU recovery. Olin-Estes and Palermo (2000b) describes the overall evaluation
approach more extensively.

DATA REQUIREMENTS: The objective of extensive site characterization is to address the same
data requirements as described in the two previous technical notes. These requirements are repeated
here for clarity and ease of reference.

There are essentially two levels of MRP estimates: screening level, based on existing information,
and definitive, based on more extensive site sampling. Several types of data are required to estimate
MRP:
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Figure 1. Evaluation of feasibility for BU recovery of dredged material
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• Bulk sediment data:
§ Volume of available bulk sediment or dredged material.
§ Grain size distribution (GSD) of the bulk material (prior to separation).
§ Concentrations of contaminants of concern (COC) in the bulk sediments.

• BU specifications, including acceptable GSD and COC levels.

• Concentrations of COC in material fractions, if separation is determined to be necessary to
meet BU specifications.

Use of existing information to obtain screening level estimates of MRP is described in Olin-Estes
and Palermo (2000a). This technical note addresses the case in which existing information is
inadequate for definitive determination of BU feasibility and MRP. Because data are rarely
available for in-CDF materials, and because physical and chemical data for in-channel materials are
not generally obtained specifically for determination of BU potential or physical separation
feasibility, most projects of any size will ultimately require an extensive sampling effort.

General sampling considerations (sampling methods and equipment, sample volume requirements,
analyte selection, depth of sampling, sample replication and compositing, and physical testing) are
the same for both the statistical and prescriptive site characterization approaches. These are
discussed fully in Olin-Estes and Palermo (2000a). This technical note address specifically the
statistical basis and procedures for developing a site sampling plan and interpreting and extrapolat-
ing data.

SITE CHARACTERIZATION USING STATISTICAL APPROACHES: In designing a sam-
pling plan, in addition to using available information about the site, it is often helpful to look at the
tools available for interpretation of the resulting data. A number of statistically based approaches
provide tools for determining the number of samples required to determine a measured parameter
with a specified degree of confidence, unbiased approaches for structuring a sampling plan, and
methods for interpreting and extrapolating data (Winkels and Stein 1997; Keillor 1995; Keillor
1993; Lubin, Williams, and Lin 1995; Isaaks and Srivastava 1989). Given the constraints of time
and budget, the number of samples required based on statistical considerations will often be much
larger than is physically or economically feasible to obtain or analyze, unless the variability of the
material is quite low. However, a sampling plan certainly should not be implemented without
considering a statistical design, even though modifications to that design may ultimately be required.
The resulting data will then lend itself to statistical analysis and available methods for extending
the data to unsampled areas. Appendix I presents a glossary of statistical terms used in the following
discussion.

Statistical Analysis. In general, the larger a data set is, the more it tends toward a normal
distribution. This is important because when it can be established that data are normally distributed,
there are a number of statistical tools to help interpret the significance of differences between
samples and to predict the likelihood of values falling outside a specified range. Among these are
the t-test, the Paired Difference Test, and Analysis of Variance (ANOVA). However, most
environmental data are not normally distributed. Due to cost constraints, the data sets are too small,
or may contain many zero values due to the heterogeneity of deposits and the difficulty of obtaining
representative samples. Because environmental data do not always meet the requirements and
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assumptions for standard (parametric) statistical methods, nonparametric methods are sometimes
useful. Nonparametric methods use the ranking of the data values, rather than the individual data
values themselves. No assumptions regarding the distribution of the data are required for nonpara-
metric methods (Mendenhall and Beaver 1994). Several of these methods do require a minimum
number of samples to be applicable, and these requirements should be reviewed during the sampling
planning stages. Among them are the Mann-Whitney test for comparison of the means and variances
of two independent samples; the Sign Test for Paired Observations, which can be used to determine
if values of a selected parameter are greater in one sample than in another (the nonparametric
paired t-test, which has a binomial distribution under certain conditions); and the Kruskal-Wallis
H-test, which is used for determining whether multiple samples come from the same population
(the nonparametric analysis of variance test, which has a chi-square distribution under certain
conditions).

The primary utility of parametric and nonparametric methods is to determine if there is a statistically
significant difference between samples or sample means. These tools may be useful in interpreting
the data and extending it to unsampled areas. Before getting to that point, however, a sampling plan
that will produce data lending itself to statistical analysis must be developed. The key questions in
developing a sampling plan are where to sample, how many samples to take, what size samples are
required, and what parameters to analyze. The first two questions can be addressed statistically.
The latter two are addressed in Olin-Estes and Palermo (2000a).

Developing a Sampling Plan Using Statistical Methods. Statistical packages have been
developed to assist in design of sampling plans and/or identification of hot spots that could be
adapted to determine the number and location of samples required to characterize a CDF. The
STATSS (Statistical Techniques Applied to Sediment Sampling), a guidance document prepared
for the U.S. Environmental Protection Agency, Region 5 (Lubin, Williams, and Lin 1995), describes
statistical considerations of sampling, and approaches for determining grid and sample size for
sampling sediments within a waterway. The Groundwater Modeling System (GMS) (Brigham
Young University 1999) is another statistically based package designed to facilitate definition of
subsurface contaminant plumes. The following is a general discussion of the underlying statistical
principles and data analysis methods that provide the framework for statistically based sampling.
The reader is referred to these statistical packages and references for more in-depth guidance in
applying these principles.

Where to sample. There are three basic sampling approaches:1

• Judgmental approach.

• Random approach.

• Systematic approach.

A judgmental approach involves applying what is known about a site, and sampling in those areas
that appear most likely to be contaminated or otherwise of interest. The judgmental approach is
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essentially the prescriptive approach described in Olin-Estes and Palermo (2000a). A systematic
approach involves imposing a uniform grid over the area of interest and sampling from the same
location in each grid. A random approach involves selecting sampling points within a gridded area
using a random number generator to choose from among the alternative sample locations. The
random approach is optimum from a statistical standpoint but in environmental sampling may not
be the best choice. If the number of samples being taken over a large area is small, purely random
sampling could well miss an area of known contamination. The judgmental and systematic
approaches help to compensate for this, but may violate the assumption of randomness required in
statistical analysis.  In practice, the following three principal sampling approaches that are used in
environmental sampling incorporate a combination of these elements:

• Systematic random.

• Judgmental random.

• Systematic judgmental.

As previously mentioned, a uniform grid is imposed over the area to be sampled in the systematic
methods. In the systematic random method, a random number generator is then used to pick the
locations within the grid that are to be sampled
(Figure 2). Alternatively, one may select only
every nth member from the sampling grid with the
starting element randomly selected (Lubin, Wil-
liams, and Lin 1995). Systematic judgmental
methods focus attention on the area most likely to
be contaminated, a grid is imposed, and a sample
is taken from the center of each grid (Figure 3).
The judgmental random method involves separat-
ing the area of interest into blocks that are ex-
pected to contain similar samples (such as similar
levels of contaminants). A grid is imposed over
these areas and sample sites are selected randomly
within each block (Figure 4). This is also referredFigure 2. Systematic random sampling

Figure 4. Judgemental random samplingFigure 3. Systematic judgmental sampling
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to as stratified random sampling (Lubin, Williams, and Lin 1995). The sampling method will
ultimately be selected based on the greatest confidence in capturing representative data, quality and
availability of existing information on which to base the method selection, and cost considerations.
Additional discussion can be found in U.S. Environmental Protection Agency/U.S. Army Corps of
Engineers (1995).

Estimating the number of samples required. Ultimately, the number of samples obtained will
be determined by cost considerations. The upper threshold will almost certainly be set by the
number of samples required to determine the desired parameter (e.g., contaminant concentrations,
percent sand) with a specified degree of confidence. If a normally distributed sample can be
assumed, then from the empirical rule, approximately 95 percent of the values will lie within 1.96sof
the mean, wheres is the standard deviation of the sample. An acceptable margin of error can then
be used to estimate the number of samples required. For example, to calculate the mean concen-
tration of a constituent at a selected depth within 10 mg/kg at the 95 percent confidence level, then:

(1)

Solving forn gives the number of samples required to determine the mean within 10 mg/kg, at the
95 percent confidence level. Higher or lower confidence levels can be used. Further discussion
can be found in Mendenhall and Beaver (1994). The obvious disadvantage to this method is that
some idea of the variability of the data to be obtained is required prior to sampling. One could use
results from analysis of selected samples taken within the CDF to estimates and determine how
many additional samples should be analyzed. (The standard deviation for the subsample can be
calculated directly, or the range of the data can be used to estimates (Appendix I).) If no data are
available, an action level can be used as an estimated value for the variance. Such an iterative
approach is described by Lubin, Williams, and Lin (1995) using a mathematical relation for
estimating sample numbers that does not use the mean, but does incorporate acceptable error levels
(α andβ). However, environmental data are typically highly variable (larges), which may result
in unrealistically high numbers of samples required. Additionally, these approaches require the
assumption of a normal distribution, which is not typical of most environmental data. The geometric
alternative variance can be used to estimate required sample size for lognormally distributed data;
this approach is further described in Lubin, Williams and Lin (1995). Another alternative is to
sample sequentially, evaluating data as they are generated and continuing to sample until a definitive
threshold is achieved at a desired confidence level. The sequential approach and additional methods
for estimating required sample numbers for different grid configurations and confidence levels are
described in Lubin, Williams, and Lin (1995).

Several of the nonparametric data analysis methods require a minimum number of samples and
observations to be valid, or require equally paired numbers of observations between samples to be
compared. For example, the Kruskal-Wallis H-test (nonparametric ANOVA) requires at least three
samples with at least three observations per sample.  When there are more than 6 observations per
sample, the distribution of the H statistic is well approximated by the chi-square distribution
(McBean and Rovers 1998). The STATSS (Lubin, Williams, and Lin 1995) guidance document
provides simple guidance for determining the number of samples required for a specified error level
or confidence interval.
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Sample size required. This is distinct from statistical sample size; in this instance sample size
refers to the volume of material that is homogenized and then sampled for analysis. For example, if a
1.8-m (6-ft) core is taken, it will normally be subdivided into smaller sections that are thoroughly
homogenized. Then a very small subsample of each homogenized section is taken for chemical
analysis. Because sediments and the distribution of contaminants within the sediments are typically
very heterogeneous, homogenization volume is a relatively important factor in obtaining data that
are representative of site conditions. Additional information regarding the influence of sample size
and replication in capturing the effects of material heterogeneity is found in Olin-Estes and Palermo
(2000a).

Interpreting and Extrapolating (Estimating) Data. Examining the different ways in which
available data can be grouped and manipulated to reveal trends may be one of the most practical
approaches to determining where to sample and how many samples to take. Isaaks and Srivastava
(1989) present a clear discussion of a number of methods for grouping data and extrapolating
existing data to unsampled points, specifically directed at taking a practical approach to the
application of statistical theory. Although many of these methods will be helpful in maximizing
the information obtainable from a limited data set, the user should be aware that the results obtained
from statistical analysis of the data may differ for different assumptions. Statistical analysis offers
an improvement over “best guess” determinations of parameter distributions, but is not a foolproof
method. One reason in particular is that the geostatistical methods described by Isaaks and
Srivastava (1989) are based on the assumption that the values of interest are spatially continuous.
This is probably a reasonable assumption for natural, undisturbed materials over limited areas. For
disturbed materials, such as dredged material disposed in a CDF, this is a more difficult assumption
to make. However, the distribution of hydraulically placed dredged material in a CDF is a result
of natural processes (settling velocities), assuming the material has not been otherwise disturbed.
Under these circumstances, continuity may be a reasonable assumption for limited areas of the CDF.
For example, gradation of particle size and contaminant levels would be expected in moving from
the inlet area to the outlet of a CDF in which the material is hydraulically placed; two or three distinct
zones might be expected.

Interpreting data.

• Univariate Data– Data pertaining to a single variable can be presented very simply in a
relative location map (Isaaks and Srivastava 1989). For example, if a uniform grid is imposed
on the sampling area, and a sample taken from the center of each grid, the resulting value for
the parameter of interest can then be superimposed on a map of the area, giving an indication
of spatial distribution. A frequency histogram may also be used to give a quick visual on the
predominantly occurring values. A cumulative frequency table will be useful in illustrating
what percentage of samples fall below a certain threshold; this is a particularly useful
technique where contaminant concentrations are of interest. Tests for normality or lognor-
mality should be conducted as a matter of routine to establish whether or not the distribution
of the data falls within either of these two categories. Typically, environmental data do not,
but this should be done as a matter of practice. Summary statistics, including the mean, range,
minimum, maximum and standard deviation, should be determined for the data, which may
be grouped by zones if that provides a more meaningful result. The spatial distribution of
values will suggest appropriate groupings, if any.
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Parameters of interest in a CDF are likely to include percent sand, percent clay, and
contaminant concentrations. The spatial distribution of each of these parameters can be
examined individually, but by looking at the relationships between these parameters, it is
likely that much can be determined about the material distribution within the CDF using
physical parameters and more limited, targeted, chemical analysis. Bivariate data analysis
methods provide the means to do this.

• Bivariate data– Bivariate data analysis methods permit the comparison of two parameter
distributions to determine whether a functional relationship exists between them (Isaaks and
Srivastava 1989).   Likely to be of interest in determining the distribution of recoverable
materials in a CDF is the relationship of percent sand and percent clay to contaminant levels.
Summary statistics and tests for normality should be calculated for each distribution individu-
ally. A relative location map can be employed, as for the univariate data, giving the values
of each parameter as a function of spatial distribution. A scatter plot of the two parameters,
one plotted on the ordinate and the other on the abscissa, may illustrate any functional
dependence that exists. The linearity of the relationship of the variables can be evaluated
using the correlation coefficientρ, defined in Appendix I. The correlation coefficient varies
between -1 and +1; +1 indicates a straight line with a positive slope (positive correlation), -1
indicates a straight line with a negative slope (negative correlation), and values near zero
indicate little or no correlation between the variables (Isaaks and Srivastava 1989). For
example, one would expect particle size and contaminant concentration to be negatively
correlated and percent clay and contaminant concentration to be positively correlated,
contaminant level decreasing with increasing particle size. If the correlation coefficient is
unduly influenced by a few extreme values, the rank correlation coefficient may be a more
useful statistic. This is further described in Isaaks and Srivastava (1989).

• Censored data– In environmental sampling, a high percentage of samples may have no
measurable contaminants (nondetects). Concentrations of these analytes, known as censored
values, are normally reported as less than the method detection level (<MDL). The actual
concentration of the contaminant lies somewhere in the range from zero to the MDL. There
are several approaches to handling censored values. One approach is to ignore these values,
which results in an overestimate of the mean and underestimate of the standard deviation
(McBean and Rovers 1998). This alternative is acceptable only when the number of
nondetects is very small. Alternatively, the censored values can be assumed to be equal to
the detection limit, but this also introduces bias into the summary statistics. This alternative
is preferred when the values are not highly variable and are near the MDL. A third alternative
is to assume the censored values to be equal to MDL/2; this is the preferred alternative when
the contaminant is present in highly variable concentrations. There are a number of statistical
methods, parametric and nonparametric, for dealing with censored data; these are further
described in McBean and Rovers (1998).

• Spatial analysis– Several variations of data groupings are possible based on the relative
location map previously described. It may be visually instructive to identify the lowest and
highest values on the map, or to replace individual data points with symbols based on
assignment to certain ranges. An indicator map uses only two symbols, designating those
data points falling above and below a specified threshold (Isaaks and Srivastava 1989). The
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indicator map would likely be most useful for visualizing material in a CDF falling within a
certain specification. However, a three-dimensional representation of the material in a CDF
is needed. Different elevations within the CDF could be mapped separately, and vertical
sections mapped in the same manner as the areal sections.

Another useful grouping tool is moving window statistics (Isaaks and Srivastava 1989). A
uniform grid of data points is divided into subareas, and the mean and standard deviation of
the parameters within each subarea are calculated and remapped at the center of the subarea.
This results in a location map in which the parameter value trends and variability are easily
seen. Overlapping the subareas can address the need for a sufficient number of data points
within each subarea to provide reliable statistics (mean and standard deviation) while keeping
areas small enough to capture local detail. Overlapping is particularly useful for small or
irregular data sets (Isaaks and Srivastava 1989). Contour maps may also provide a useful
visual description of material distribution, although their quantitative value may be limited
where extensive interpolation is required. Plots of standard deviation versus sample means,
h-scatter plots, correlation functions, covariance functions, and variograms are other available
interpretive tools (Isaaks and Srivastava 1989) that might be considered if the basic summary
statistics do not reveal a meaningful trend.

Estimating data. Estimating parameters for unsampled locations based on a limited data set is
central to environmental characterization problems. A number of methods have been developed
under the umbrella of geostatistics that have potential application. All are subject to the same
inaccuracies as a result of site variability. Local estimates based on data that are highly variable are
not likely to be very accurate, and should be interpreted in light of the confidence associated with
the data set and the degree of spatial continuity evidenced by the data set.

The first step in estimating is to define the problem. The following three features of estimating a
problem are adapted from Isaaks and Srivastava (1989):

• Is a global or local estimate desired?

• Is an estimate of the mean or the complete distribution of data values desired?

• Are point estimates or block values desired?

To characterize the deposits within a CDF, some point estimates will most likely be needed to
identify extreme values (particularly with respect to contaminant levels), mean block values for
particle size, and some estimate of the variability of the data to estimate recoverable volumes of
material.

All of the methods discussed in Isaaks and Srivastava (1989) involve weighted linear combinations
of the known data points:

(2)estimate= =
=
∑$v w vi i
i

n

1
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where

= the data point being estimated

wi = a weighting factor

vi = a data value

In estimating, adjustments are made to the sample weighting factor for distance from the point being
estimated and clustering of data points. Samples closest to the data point being estimated will be
given more weight than those at a greater distance. Data points that are clustered close together
rather than uniformly distributed over an area will be given less weight because they are not
representative of the larger area and may unduly influence the value of estimated global parameters.
Isaaks and Srivastava (1989) describe a number of two- and three-dimensional declustering
approaches. Additionally, closely spaced samples having similar values contain redundant infor-
mation, and sample weights should be adjusted for this factor as well.

An important point to note is that distributions estimated from data points are volume dependent
(Isaaks and Srivastava 1989); that is, if a homogenized 0.3-m (1-ft) section of core constitutes a
single data point, the distribution estimated with this and like data points constitutes the distribution
of parameter values for homogenized 0.3-m (1-ft) core sections. For this application, however,
parameter values are desired for larger volumes of a scale that can be practically and economically
excavated. Estimates of recoverable materials based on core analysis may not reflect the averaging
that occurs when the material is excavated in larger volumes. Correcting for the error introduced
by extrapolating small volume estimates to large volumes is a difficult problem, but some effort
should be made to evaluate the potential effect of this factor. One approach might be to examine
the standard deviation of the means of individual core sites.

Geostatistical estimating methods require identification of a model upon which the estimates are
based (Isaaks and Srivastava 1989). A deterministic model can be used if enough is known about
the process effects being measured to quantify them. For example, Stokes’ law might be used to
model the expected distribution of grain sizes across a portion of a CDF based on settling velocities,
and extrapolate between data points to estimate the location of transitions across a certain grain size
threshold. (Note that Stokes’ law applies only to discrete settling of individual, nonflocculating
particles. Discrete settling of fines does not normally occur in a CDF; thus the model would be
applicable only to the coarse material in the CDF.) However, it is unlikely that most CDFs have
been operated in a manner consistent enough to use this approach. Probabilistic models are used
when no suitable deterministic model is available; in this approach the sample data are viewed as
the result of some random process (Isaaks and Srivastava 1989). The most common parameters
used in probabilistic approaches are the mean, or expected value, and the variance.

Global estimation is the determination of mean parameter values for large areas.  Point estimation
is the estimation of parameter values for small areas, or specific locations (Isaaks and Srivastava
1989). Declustering methods are used in both global and point estimation when samples are
clustered rather than distributed over the entire area of interest. Point estimation methods also
require weighting of sample values to reflect the relative distance from the point or area being
estimated. Two point estimation methods, polygons and the local sample mean method, are

$v
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adaptations of inverse distance declustering methods. In the polygonal method, the sample value
closest to the point being estimating is selected as the estimate. This value holds throughout the
polygon of influence constructed around the estimated point. This method results in discontinuous
parameter distributions over the
area of interest (Figure 5).

The method of triangulation
eliminates these discontinuities
by fitting a plane through three
samples surrounding the point
to be estimated. An equation of
the plane is developed that can
be solved for the estimated pa-
rameter value at any point
within the triangle by substitut-
ing the coordinates of the point.
Alternatively, weighting fac-
tors can also be derived using
triangulation. Inverse distance
methods apply a weighting factor to nearby samples that is inversely proportional to the distance
of the data point from the point being estimated.  Some powerp of the distance may also be used;
small values ofp decrease the difference in the weighting factors and larger values ofp increase the
difference. These methods are more fully described in Isaaks and Srivastava (1989).

Selection of nearby samples used as the basis for point estimation is also an important step in the
estimating process, and may also be a consideration in location of initial sampling points. Isaaks
and Srivastava (1989) refer to areas containing relevant samples as “search neighborhoods.” Within
the search neighborhood there must be a sufficient number of nearby samples, but not too many or
redundant samples. The relevance of samples falling within the search neighborhood should also
be considered. The number of samples to include is particularly important to inverse distance and
kriging.  The number of samples included using geometric estimating techniques is self-determin-
ing, based upon the orientation of the samples.

Normally, all available samples within the defined search neighborhood are used in estimation.
Typically, an ellipse is centered on the point being estimated, with the long axis oriented in the
direction of greatest continuity of the sample values (Isaaks and Srivastava 1989). In a CDF, this
would likely be horizontally across the cell, perpendicular to the direction of flow. The length to
width of the ellipse is determined by judgment, based on the degree of anisotropy evidenced in the
available data.

Alternatively, all samples within a specified distance of the point to be estimated might be used.
For regularly gridded data, the search neighborhood should be at least large enough to include the
four nearest samples. In practice, a minimum of 12 samples is typical (Isaaks and Srivastava 1989).
The search neighborhood for irregularly gridded data should be just larger than the average spacing
between the sample data, estimated as follows (Isaaks and Srivastava 1989):

Figure 5. Polygonal point estimating method (adapted from Isaaks
and Srivastava 1989)
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(3)

At the same time that one must be concerned with having a sufficient number of samples for
estimating, too many samples can be problematic. Computations for estimating procedures such
as kriging become cumbersome with too many samples. This can be addressed by compositing
samples outside the immediate area of the point being estimated. This procedure is further described
in Isaaks and Srivastava (1989).

Ordinary kriging is an unbiased estimating method that is intended to minimize the mean residual
mR, or error, and the variance of the errors. A probability model in which the bias and the error
variance can be calculated is used, and nearby samples weighted to givemR = 0 and minimize .
The sample weights will change as unknown values are estimated (Isaaks and Srivastava 1989).
The weighting matrixw is derived by multiplying two matrices (C and D) constructed from a selected
random function model and parameters. The mathematical development of this procedure is
somewhat complicated and the relationship to the physical problem not readily apparent. Simply
described, the matrices are composed of the covariances between sample data points and the point
being estimated. The D matrix “provides a weighting scheme similar to the inverse distance
methods” (Isaaks and Srivastava 1989); the covariance between any sample and the point estimated
decreases as the distance between them increases. The difference between the D matrix and inverse
distance weights is that the covariances can be calculated from a larger family of functions, rather
than being limited to a single form |h|-p (whereh is the distance between the points andp is an
arbitrarily selected exponent, as previously described). In effect, the kriging distance can be
considered a statistical distance, rather than the geometric distance of the inverse distance methods
(Isaaks and Srivastava 1989).  The C matrix takes into account spatial continuity and redundancy,
automatically providing an adjustment for clustering of data points. Ordinary kriging is therefore
less adversely affected by sample clustering than other estimating methods, although it is compu-
tationally more difficult.

One characteristic of ordinary kriging is that, for selected functions, some of the sample weights
may be negative, although the sum of the sample weights will always be 1, a necessary condition
of unbiasedness. The result is that the procedure can yield estimates larger than the largest sample
value and smaller than the smallest sample value. Since the data set is unlikely to contain the most
extreme values, this is advantageous. A disadvantage is that negative estimates may also result.
These may be arbitrarily set to zero when negative values do not make physical sense, as in the case
of concentrations (Isaaks and Srivastava 1989). Selection of an appropriate model and model
parameters requires fitting available data with a suitable function. This procedure and the result of
varying the function parameters are extensively discussed in Isaaks and Srivastava (1989). Addi-
tionally, the random function model can be selected to reflect the degree of anisotropy of the site.
Obviously, judgment and experience are requisite to using this procedure.

Other methods of point estimation can be found in Isaaks and Srivastava (1989). While ordinary
kriging provides a method of obtaining point estimates, block kriging is a procedure for estimating
an average value within a prescribed block. The previously described estimating methods use the
spatial continuity of a single variable to provide estimates for unsampled points. Cokriging is a

Average spacing between samples
Total area ered by samples

Number of samples
= cov

σR
2

σR
2
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method that uses information from secondary variables, which may be correlated with the primary
variable, to improve estimates. An example of this might be the use of grain size as the secondary
variable to improved estimates of contaminant concentration, the primary variable.

The assistance of a statistician will undoubtedly be helpful in designing a sampling plan that will
produce data suitable for statistical analysis and estimating procedures. This note presents only a
general discussion of the procedures and major considerations; a thorough familiarity with and
understanding of the procedures by the practitioner is warranted.

COMPLETION OF BU AND SEPARATION FEASIBILITY EVALUATION: Once a reliable
estimate of MRP has been developed, the information can be used in completing the evaluation of
BU and separation feasibility. If recovery potential matches the requirements for the BU applica-
tions under consideration, and separation is required, appropriate operational methods or equipment
for separation is selected. A cost analysis can then be performed and the final decision on separation
feasibility made. Procedures for equipment selection and cost estimating are described in Olin et
al. (1999). If separation is not required, a more straightforward cost benefit analysis can be
conducted.

CONCLUSIONS: Development of a reuse plan for a CDF or dredging project will require a
multistep approach incorporating existing data, practical and/or statistical sampling approaches, and
identification of local BU opportunities and requirements. Little field verification is presently
available regarding the efficacy of one sampling approach over another in characterizing the
distribution of materials in a CDF. As further field experience is gained, refinements can likely be
made that will result in an optimal approach and greater confidence in the results. Physical separation
is only one of several approaches that can be taken to produce material suitable for various BUs.
Separation should be evaluated together with other alternatives to determine the most suitable
approach for a given site.

POINTS OF CONTACT: For additional information, contact the author, Trudy J. Olin-Estes
(601-634-2125,olint@wes.army.mil)or the Program Manager of the Dredging Operations and
Environmental Research Program, Dr. Robert M. Engler (601-634-3624,englerr@wes.army.mil).
This technical note should be cited as follows:

Olin-Estes, T. J. (2000). “Determining recovery potential of dredged material for
beneficial use – Site characterization: Statistical approach,”DOER Technical Notes
Collection (ERDC TN-DOER-C15), U.S. Army Engineer Research and Development
Center, Vicksburg, MS. www.wes.army.mil/el/dots/doer
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APPENDIX I
STATISTICAL TERMS AND DEFINITIONS

Terminology – Several terms are fundamental to an understanding and use of statistics in structuring
a sampling plan and interpreting the resulting data. These are described briefly here. More rigorous
definitions can be found in any text on statistics.

Sample – In statistical terms, sample refers to a group of observations taken from an overall
population (as distinct from the common usage, which refers to a discrete amount of material that,
when measured for certain parameters of interest, would compose one of the observations of a
statistical sample). For example, the percent sand for each 0.3-m (1-ft) increment of a 1.8-m (6-ft)
core could collectively be considered a sample. Various statistical parameters of this sample could
be compared with those of other cores to determine whether  apparent differences are greater than
that which would be expected from the random variability of the data. If the samples are
significantly different, this may be an indication of a trend, such as increasing or decreasing particle
size as a function of location in the CDF.

Distribution – This refers to the shape of the graph resulting when the values of a data set are
graphed against the number of times they occur. The most familiar distribution is the normal
distribution, also known as the Gaussian, or bell-shaped, distribution (Figure I1). There are various
tests for normality. The distribution of the data, if known, can be used to determine the probability
of occurrence of a specific parameter value, such as concentration or grain size. Most environmental
data are not normally distributed. Skewed distributions, with a long tail to the right or to the left,
are common.

Figure I1. Normal (Gaussian) distribution
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Mean – The mean is a measure of central tendency of the data, that is, the central value about which
the data are grouped. There are several different types of means, including the arithmetic mean, the
harmonic mean, and the geometric mean. The arithmetic meanx is most commonly used, but the
harmonic meanH and geometric meanG are important when the data set includes a few very high
or low values that may influence the arithmetic mean (McBean and Rovers 1998). The arithmetic
mean is defined as follows, and has the same units as the individual data observations (e.g., mg/kg):

(I1)

where

xi = individual observations (values)

n = the number of observations

The relationship between the different means is as follows:

(I2)

Median – The median is also a measure of central tendency, and may be more reflective of the
center of gravity of a skewed distribution than the mean (Figure I2). The median is found by ranking
then measurements from smallest to largest. If n is odd, the median is the value with rank (n + 1)/2;
if n is even, the median is the value halfway between the measurements with rankn/2 andn/2 + 1,
that is, the average of the two middle values (Mendenhall and Beaver 1994).

Mode – The mode is the most frequently occurring value of the measured variable.

Standard deviation– The standard deviations is a measure of the scatter of the data (how closely
the data are grouped around the central value, the mean). A small standard deviation indicates
closely grouped data with little variability. A large standard deviation indicates data that are widely
variable. The number of standard deviations a value is away from the meanx is an indication of its
probability of occurrence. For example, by the empirical rule, for a data distribution that is
approximately bell shaped (normally distributed, or nearly so), 68 percent of the values will be
within one standard deviation of the mean (x plusn minus s), 95 percent of the values will be within
two standard deviations of the mean, and most or all of the values will be within three standard
deviations of the mean (Figure I3) (Mendenhall and Beaver 1994; McBean and Rovers 1998). A
value falling more than three standard deviations from the mean has a very small probability of
occurrence. Values within one to two standard deviations would be reasonably expected to occur.
This is the predictive value of statistical application to sampling; it allows the data to be extended
to speculate on values expected in unsampled areas. Data with low variability increase the level of
confidence in determining how likely a certain value is to occur, or threshold to be exceeded.
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Figure I2. Mean, median, and mode

Figure I3. Standard deviations from the mean (adapted from McBean and Rovers 1998)
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The standard deviations has the same units as the mean and is defined as follows:

(I3)

(The square of the standard deviations2 is known as the variance. The term is less commonly used
because the units are squared and it is not, therefore, as intuitively useful; but it refers to the same
characteristic of the data. A high variance indicates widely variable data; a low variance indicates
little variability.)

Range– The range is also a measure of the scatter of the data, is useful for bracketing the extremes
of the data, and can also be used for a rough estimate of the standard deviation (s≈ R/4). The range
is simply the difference between the largest and the smallest value in the data set. The range can
be influenced by the existence of a single extreme value. The 10-90 percent range is less sensitive
to the presence of a few extreme data points, and is the difference between the highest and lowest
values of 80 percent of the data. The interquartile range is a similar statistic, excluding the upper
and lower 25 percent of the data.

Correlation coefficient – a measure of the linearity of the relationship between two parameters.
The correlation coefficient is given as:

(I4)

whereσi is the standard deviation of the population, estimated for a sample ass, as previously
defined.

Covariance – The covariance is defined by the numerator of the correlation coefficient, and is
sometimes used alone as a summary statistic. Dividing the covariance by the standard deviations
ensures that the correlation coefficient is always between±1, and is therefore independent of the
magnitude of the data (Isaaks and Srivastava 1989).

Bias– “An estimator of a parameter is said to be unbiased if the mean of its distribution is equal to
the true value of the parameter. Otherwise, the estimator is said to be biased” (Mendenhall and
Beaver 1994).

Accuracy and precision – These are two terms of importance that are frequently confused.
Accuracy refers to the closeness of a measured value to the true value. Measured values may differ
from the true value as a result of instrument variability, operator error, losses in handling, and sample
contamination from other sources. Precision refers to the repeatability of a method. Data that are
accurate and precise are desirable, but accuracy cannot be determined for an unknown quantity
(such as the concentration of lead in a soil sample). Data that are precise at least assure that methods
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are consistent, and the error for a specific analytical method can be quantified using standards.
Precise data should still be interpreted in light of identifiable factors that might give results different
from the true value (inaccurate results). For example, concentrations that seem unreasonably high
given what is known about the source of a material may suggest sample or instrument contamination
from other sources. Concentrations that are unexpectedly low may suggest loss mechanisms, such
as volatilization or bacterial degradation occurring in samples improperly stored, or other analytical
error. Careful sample handling, adequate replication, and suitable quality control measures help to
minimize these types of errors.
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